Теория Вероятности Генетики

⭐ ⭐ ⭐ ⭐ ⭐ Доброго времени суток, дорогие читатели блога, прямо сейчас мы будем постигать возможно самую необходимую и интересующую Вас тему — Теория Вероятности Генетики. После прочтения у Вас могут остаться вопросы, поэтому лучше всего задать их в комметариях ниже.

Мы всегда и постоянно обновляем опубликованную информацию, в этом модете быть уверены, что Вы прочтете всю самую новую информацию.

Гибриды обозначаются буквой «F» с цифровым индексом, обозначающий порядковый номер гибридного поколения:
Р aa X Aa
а а А а
F1 Aa aa

Решение задач по генетике

Однако, гомологичные хромосомы могут перекрещиваться (кроссинговер или прекрест) и обмениваться гомологичными участками. В этом случае гены одной хромосомы переходят в другую, гомологичную ей. Чем ближе друг к другу расположены гены в хромосоме, тем сильнее между ними сцепление и тем реже происходит их расхождение при кроссинговере, и, наоборот, чем дальше друг от друга отстоят гены, тем слабее сцепление между ними и тем чаще возможно его нарушение.

Оформление задачи

Закон расщепления (второй закон Менделя):
Закон, открытый в 1865 году, гласит:
При скрещивании гибридов первого поколения между собой во втором поколении признаки обоих родителей появляются в определенном численном соотношении: 3:1. Образуется две фенотипические группы – доминантная и рецессивная.
В опытах Менделя с цветками гороха при самоопылении гибридов первого поколения с пурпурными цветками произошло расщепление признаков: 3/4 особей имели пурпурные цветки, 1/4 — белые.

же принципиальное отличие «демона Дарвина» от «демона Максвелла»? Ответ прост: они действуют на разных уровнях. Все начинается на атомно-молекулярном уровне. На этом уровне возникают случайные ненаправленные мутации, происходит случайная перекомбинация генов. Если бы «демон Максвелла» мог функционировать, то он тут же бы принялся отбирать наиболее «выгодные» мутации, наиболее «удачные» комбинации генов. Этого происходит, поскольку на атомно-молекулярном уровне отбор невозможен.

Ненаправленная наследственная изменчивость. По выражению советского биолога академика И. И. Шмальгаузена, каждый вид и каждая его популяция таят в себе «резерв наследственной из­менчивости». Этот резерв может быть использован через естест­венный отбор при изменении условий обитания. Существуют два основных «механизма» появления ненаправлен­ной наследственной изменчивости. Это, прежде всего, мутацион­ная изменчивость. В конечном счете именно мутации лежат в основе наблюдаемого многообразия видов и многообразия генов внутри вида. Мутационные изменения совершаются очень медленно, но они совершаются непрестанно и с очень давних пор. Более оперативен «механизм» появления наследственной изменчивости в результате случайного комбинирования родительских генов при скрещивании. При этом надо различать комбинирование генов в результате того, что соединяются случайные пары разнополых гамет, и комбинирование генов в результате того, что в гамету попадают случайно перетасованные части парных хромосом (яв­ление перекреста хромосом).

Тюмень, 2003

Открытый Вавиловым закон иногда сопоставляют с периодической системой элементов Менделеева, желая тем самым подчеркнуть, что, подобно системе Менделеева, этот закон позволяет предсказывать новые мутанты. В 1917 году во время научной экспедиции Вавилов нашел на Памире разновидность пшеницы с листьями, у основания которых не было лигулы (язычка). В то время биологи не знали ни безлигульной ржи, ни безлигульного ячменя. Но, по закону Вавилова, такие разновидности ржи и ячменя должны были встречаться. И вот в 1918 году была найдена

Рекомендуем прочесть:  Замена школьного проездного по утере

23 Задача Классическая гемофилия передаётся как рецессивный, сцепленный с х – хромосомой признак. Отец Мэри больной гемофилией, а мать здорова (все её предки были здоровые). Определите вероятность рождения больного гемофилией ребенка от брака Мэри и Проши (все в роду здоровые)?

Теория вероятностей в генетике

5 2. Вероятность появления особей с тем или иным генотипом можно определить по формуле: число ожидаемых событий число ожидаемых событий Вероятность = число всех возможных число всех возможных событий событий

Похожие презентации

26 Задача Рецессивные гены, кодирующие признаки гемофилии и дальтонизма, сцеплены с Х- хромосомой. Мужчина, больной гемофилией, женится на здоровой женщине, отец которой был дальтоником, но не гемофиликом. Какое потомство получится от брака их дочери со здоровым мужчиной?

Аутосомно-доминантный тип наследования можно узнать по следующим признакам:

  • Болезнь проявляется в каждом поколении семьи (передача по вертикали)
  • Здоровые дети больных родителей имеют здоровых детей
  • Мальчики и девочки болеют одинаково часто
  • Соотношение больных и здоровых 1:1

Обратите внимание, потомство F1 получилось также единообразным (возможен только один вариант — Aa), но фенотипически у гетерозиготы признак будет проявляться как промежуточное состояние (AA — красный, aa — белый, Aa — розовый). Это можно сравнить с палитрой художника: представьте, как смешиваются красный и белый цвета — получается розовый.

Пример решения генетической задачи №3

Я хочу сразу навести вас на мысль о III законе Менделя (закон независимого наследования), который скрыт в фразе » Гены . расположены в разных парах гомологичных хромосом». Вы увидите в дальнейшем, насколько ценна эта информация. Также заметьте, что речь в этой задаче идет о аутосомных генах (расположенных вне половых хромосом). Аутосомно-доминантный тип наследования означает, что болезнь проявляется, если ген в доминантном состоянии: AA, Aa — болен.

Менделю принадлежала мысль, что в половых клетках содержится не диплоидный, а гаплоидный набор наследственных факторов. При оплодотворении гаметы типа (или) гаметой ) получится зигота типа ), т.е. растения будут размножаться в чистоте. Такое соединение дает начало гомозиготному организму. Гомозиготной называется особь, у которой гены, определяющие данный признак, идентичны. Айала страница 47

Гипотеза Менделя достаточна для объяснения наблюдаемых закономерностей. Доминантный аллель принято обозначать прописной буквой, например,, ген рецессивного признака — строчной, например . Из двух типов генов составляются три комбинации . Двойной набор генов — наследственную конституцию особи, по данному признаку заложенную в ней программу, определяющую развитие, — называют генотипом, а конкретное внешнее проявление генотипа — фенотипом. В 1909 году Вильгельм Иоганнсен сформулировал важное различие между генотипом и фенотипом. Фенотип организма — это совокупность внешних признаков, тех, которые можно наблюдать: морфология, физиология и поведение. Генотип — это наследуемая генетическая организация. На протяжении жизни организма его фенотип может изменяться, а генотип остается неизменным.

Рекомендуем прочесть:  Квартира Принадлежит Арендодателю На Основании Чего

Законы корпускулярной теории наследственности, взаимодействие генов. Решение генетических задач с использованием математических методов. Проверка соответствия наблюдаемых данных теоретически ожидаемым. Вероятность рождения потомства с искомыми признаками.

Применение математического подхода к генетическому эксперименту позволило Менделю проанализировать точно полученные результаты. Открытые им закономерности носят статистический характер. Все случаи передачи признаков подчиняются законам теории вероятности: если число потомков достаточно велико, соотношение их будет более точно выражено.

  • Уметь читать условие задачи, выбирая из него необходимую информацию.
  • Уметь различать аллельные и неаллельные гены.
  • Различать наследование, сцепленное с полом и аутосомное.
  • Уметь пользоваться терминологией и правилами оформления задач.
  • Уметь пользоваться решеткой Пеннета.

Задачи по генетике: примеры, решение с объяснениями

Теперь, когда основные генетические принципы рассмотрены, можно приступать к объяснению задач по генетике. Начнем изучение с самых простых примеров на моногибридное скрещивание, в которых рассматривается только одна пара признаков.

Оформление

Умение решать задачи по генетике очень важно, особенно, если школьник собирается сдавать Единый Государственный Экзамен по предмету биология. На первый взгляд, генетические задачи представляют собой что-то запутанное и непонятное. Но если разобраться в процессе решения, то все окажется не так уж и страшно. Давайте разберемся, как решать задачи по генетике.

Правило умножения гласит, что если какие-то события наблюдаются независимо друг от друга, то вероятность того, что два события будут происходить одновременно, равна произведению вероятностей этих событий. Вероятность образования гамет с рецессивным геном у родителей, гетерозиготных по этому гену, составляет 1/2 для каждого родителя. Вероятность «встречи» таких гамет с рецессивным геном при образовании зигот будет равна произведению вероятностей образования таких гамет у каждого из родителей, т.е. 1/2 х 1/2 = 1/4.

Теория Вероятности Генетики

Правило сложения гласит, если мы хотим узнать вероятность реализации либо одного, либо другого события, то вероятности каждого из этих событий складываются. Так, если нас будет интересовать вероятность гомозиготного потомства в браке гетерозиготных родителей, то надо сложить вероятности рецессивных и доминантных гомозигот, т.е. 1/4 +1/4 = 1/2.

Правило умножения в генетике

Этими правилами приходится довольно часто пользоваться врачам-генетикам во время медико-генетического консультирования при расчете вероятностей тех или иных событий в семьях, имеющих больного наследственным заболеванием ребенка.

Развитие генетики показало, что не все признаки наследуются в соответствии с законами Менделя. Так, закон независимого наследования генов справедлив только для генов, расположенных в разных хромосомах.
Закономерности сцепленного наследования генов были изучены Т. Морганом и его учениками в начале 20-х гг. XX в. Объектом их исследований являлась плодовая мушка дрозофила (срок её жизни невелик, и за год можно получить несколько десятков поколений, её кариотип составляют всего четыре пары хромосом).
Закон Моргана: гены, локализованные в одной хромосоме, наследуются преимущественно вместе.
Сцепленные гены — гены, лежащие в одной хромосоме.
Группа сцепления — все гены одной хромосомы.
В некотором проценте случаев сцепление может нарушаться. Причина нарушения сцепления — кроссинговер (перекрёст хромосом) — обмен участками хромосом в профазе I мейотического деления. Кроссинговер приводит к генетической рекомбинации. Чем дальше друг от друга расположены гены, тем чаще между ними происходит кроссинговер. На этом явлении основано построение генетических карт — определение последовательности расположения генов в хромосоме и примерного расстояния между ними.

Рекомендуем прочесть:  Если не прописаться в квартире по какому тарифу платить за свет

Цитологические основы единообразия первого поколения и расщепления признаков во втором поколении состоят в расхождении гомологичных хромосом и образовании гаплоидных половых клеток в мейозе.
Гипотеза (закон) чистоты гамет гласит: 1) при образовании половых клеток в каждую гамету попадает только один аллель из аллельной пары, то есть гаметы генетически чисты; 2) у гибридного организма гены не гибридизуются (не смешиваются) и находятся в чистом аллельном состоянии.
Статистический характер явлений расщепления. Из гипотезы чистоты гамет следует, что закон расщепления есть результат случайного сочетания гамет, несущих разные гены. При случайном характере соединения гамет общий результат оказывается закономерным. Отсюда следует, что при моногибридном скрещивании отношение 3:1 (в случае полного доминирования) или 1:2:1 (при неполном доминировании) следует рассматривать как закономерность, основанную на статистических явлениях. Это касается и случая полигибридного скрещивания. Точное выполнение числовых соотношений при расщеплении возможно лишь при большом количестве изучаемых гибридных особей. Таким образом, законы генетики носят статистический характер.
Анализ потомства. Анализирующее скрещивание позволяет установить, гомозиготен или гетерозиготен организм по доминантному гену. Для этого скрещивают особь, генотип которой следует определить, с особью, гомозиготной по рецессивному гену. Часто скрещивают одного из родителей с одним из потомков. Такое скрещивание называется возвратным.
В случае гомозиготности доминантной особи расщепления не произойдёт:

Генетика крови

Третий закон Менделя. Г. Мендель провёл дигибридное скрещивание растений гороха с жёлтыми и гладкими семенами и растений гороха с зелёными и морщинистыми семенами (и те и другие – чистые линии), а затем скрестил их потомков. В результате им было установлено, что каждая пара признаков при расщеплении в потомстве ведёт себя так же, как при моногибридном скрещивании (расщепляется 3:1), то есть независимо от другой пары признаков.